Hypergraph
Hypergraph#
- class discopy.hypergraph.Hypergraph(dom, cod, boxes, wires, spider_types=None, offsets=None)[source]#
Bases:
Composable
,Whiskerable
,NamedGeneric['category', 'functor']
A hypergraph is given by a domain, a codomain, a list of boxes, a list of spider types and a list of wires from
ports()
to spiders.- Parameters
dom (frobenius.Ty) – The domain of the diagram, i.e. its input.
cod (frobenius.Ty) – The codomain of the diagram, i.e. its output.
boxes (tuple[frobenius.Box, ...]) – The boxes inside the diagram.
wires (tuple[Any, ...]) – List of wires from ports to spiders.
spider_types (Union[Mapping[Any, Ty], Iterable[Ty]]) – Mapping[Any, frobenius.Ty] Mapping from spiders to atomic types, if
None
then this is computed from the types of ports.offsets (tuple[int | None, ...]) – tuple[int | None, …] Number of wires to the left of each box used by
to_diagram()
.
Note
Hypergraphs are parameterised by a
category
, i.e.dom
andcod
are of typecategory.ob
and each box is of typecategory.ar
.>>> from discopy.frobenius import Hypergraph as H >>> from discopy.frobenius import Ty, Diagram >>> assert H.category.ob == Ty and H.category.ar == Diagram
They are also parameterised by a
functor
called byto_diagram()
.>>> from discopy.frobenius import Functor >>> assert H.functor == Functor
Note
The wires go from ports to spiders, they are given as a list of length:
len(dom) + sum(len(box.dom) + len(box.cod) for box in boxes) + len(cod)
The values themselves don’t matter, they are simply labels for the spiders. We must have
len(types) >= len(set(wires))
, the spiders that don’t appear as the target of a wire are scalar spiders, i.e. with zero legs.Abstractly, a hypergraph diagram can be seen as a cospan for the boundary:
range(len(dom)) -> range(n_spiders) <- range(len(cod))
together with a cospan for each box in boxes:
range(len(box.dom)) -> range(n_spiders) <- range(len(box.cod))
Composition of two hypergraph diagram is given by the pushout of the span:
range(self.n_spiders) <- range(len(self.cod)) -> range(other.n_spiders)
Examples
>>> x, y, z = map(Ty, "xyz")
>>> assert H.id(x @ y @ z).n_spiders == 3 >>> assert H.id(x @ y @ z).wires == (0, 1, 2, 0, 1, 2)
>>> assert H.swap(x, y).n_spiders == 2 >>> assert H.swap(x, y).wires == (0, 1, 1, 0)
>>> assert H.spiders(1, 2, x @ y).n_spiders == 2 >>> assert H.spiders(1, 2, x @ y).wires == (0, 1, 0, 1, 0, 1) >>> assert H.spiders(0, 0, x @ y @ z).n_spiders == 3 >>> assert H.spiders(0, 0, x @ y @ z).wires == ()
>>> from discopy.frobenius import Box >>> f, g = Box('f', x, y).to_hypergraph(), Box('g', y, z).to_hypergraph()
>>> assert f.n_spiders == g.n_spiders == 2 >>> assert f.wires == g.wires == (0, 0, 1, 1)
>>> assert (f >> g).n_spiders == 3 >>> assert (f >> g).wires == (0, 0, 1, 1, 2, 2)
>>> assert (f @ g).n_spiders == 4 >>> assert (f @ g).wires == (0, 1, 0, 2, 1, 3, 2, 3)
- property box_wires: list[tuple[tuple[int, ...], tuple[int, ...]]]#
The wires connecting the boxes of a hypergraph.
Returns a list of length
len(self.boxes)
such that:dom_wires, cod_wires = self.box_wires[i] len(dom_wires) == len(box.dom) and len(cod_wires) == len(box.cod)
for
box = self.boxes[i]
.Example
>>> from discopy.frobenius import Ty, Box, Hypergraph as H
>>> x, y, z = map(Ty, "xyz") >>> f = Box('f', x, y @ y).to_hypergraph() >>> g = Box('g', y @ y, z).to_hypergraph() >>> for wires in (f >> g).box_wires: print(wires) ((0,), (1, 2)) ((1, 2), (3,))
- property spider_wires: list[tuple[set[int], set[int]]]#
The input and output wires for each spider of a hypergraph.
Example
>>> from discopy.frobenius import Ty, Box, Hypergraph as H
>>> x, y, z = map(Ty, "xyz") >>> f = Box('f', x, y).to_hypergraph() >>> for wires in (f >> H.spiders(1, 2, y)).spider_wires: print(wires) ({0}, {1}) ({2}, {3, 4})
- property ports#
The ports in a diagram.
Examples
>>> from discopy.frobenius import Ty, Box, Hypergraph as H
>>> x, y, z = map(Ty, "xyz") >>> f = Box('f', x, y @ y).to_hypergraph() >>> g = Box('g', y @ y, z).to_hypergraph() >>> for port in (f >> g).ports: print(port) Node('input', i=0, obj=frobenius.Ty(frobenius.Ob('x'))) Node('dom', depth=0, i=0, obj=frobenius.Ty(frobenius.Ob('x'))) Node('cod', depth=0, i=0, obj=frobenius.Ty(frobenius.Ob('y'))) Node('cod', depth=0, i=1, obj=frobenius.Ty(frobenius.Ob('y'))) Node('dom', depth=1, i=0, obj=frobenius.Ty(frobenius.Ob('y'))) Node('dom', depth=1, i=1, obj=frobenius.Ty(frobenius.Ob('y'))) Node('cod', depth=1, i=0, obj=frobenius.Ty(frobenius.Ob('z'))) Node('output', i=0, obj=frobenius.Ty(frobenius.Ob('z')))
- property n_spiders#
The number of spiders in a hypergraph diagram.
- property scalar_spiders#
The zero-legged spiders in a hypergraph diagram.
- then(other)[source]#
Composition of two hypergraph diagrams, i.e. their
pushout()
.- Parameters
other (Hypergraph) –
- tensor(other)[source]#
Tensor of two hypergraph diagrams, i.e. their disjoint union.
- Parameters
other (Hypergraph) –
- dagger()[source]#
Dagger of a hypergraph diagram, called with
[::-1]
.Examples
>>> from discopy.frobenius import Ty, Box, Hypergraph as H >>> x, y, z = map(Ty, "xyz") >>> f = Box('f', x, y).to_hypergraph() >>> g = Box('g', y, z).to_hypergraph() >>> assert (f >> g)[::-1] == g[::-1] >> f[::-1] >>> assert H.spiders(1, 2, x @ y)[::-1] == H.spiders(2, 1, x @ y)
- explicit_trace(left=False)[source]#
The trace of a hypergraph with explicit boxes (trace, cup or cap).
- Parameters
left – Whether to trace on the left or right.
Note
When
category.ar.trace_factory
is a subclass ofcategory.ar
, e.g. for symmetric diagrams, then the result is just one big trace box wrapped up as a hypergraph.Otherwise, we assume that the trace factory is a class method, e.g. for compact diagrams, in which case we use this method to introduce cup and cap boxes.
- trace(n=1, left=False)[source]#
The trace of a hypergraph is its pre- and post-composition with cups and caps to form a feedback loop.
- Parameters
n – The number of wires to trace.
left – Whether to trace on the left or right.
- interchange(i, j)[source]#
Interchange boxes at indices
i
andj
.- Parameters
i (int) – The index of the first box.
j (int) – The index of the second box.
- Return type
Example
>>> from discopy.frobenius import Ty, Box, Hypergraph as H >>> x = Ty('x') >>> f = Box('f', Ty(), x).to_hypergraph() >>> g = Box('g', x, Ty()).to_hypergraph() >>> print((f >> g).interchange(0, 1)) Cap(x, x) >> g @ x >> f @ x >> Cup(x, x)
- simplify()[source]#
Simplify by applying interchangers eagerly until the length of the diagram is minimal, takes quadratic time.
Example
>>> from discopy.frobenius import Ty, Box, Hypergraph as H >>> x = Ty('x') >>> f = Box('f', Ty(), x).to_hypergraph() >>> g = Box('g', x, Ty()).to_hypergraph() >>> assert (f >> g).interchange(0, 1).simplify() == f >> g
- Return type
- property bijection#
Bijection between ports.
:raises ValueError : If the hypergraph is not bijective.:
Examples
>>> from discopy.frobenius import Ty, Box, Hypergraph as H >>> x, y = map(Ty, "xy") >>> f = Box('f', x, y).to_hypergraph() >>> for i, port in enumerate(f.ports): print(i, port) 0 Node('input', i=0, obj=frobenius.Ty(frobenius.Ob('x'))) 1 Node('dom', depth=0, i=0, obj=frobenius.Ty(frobenius.Ob('x'))) 2 Node('cod', depth=0, i=0, obj=frobenius.Ty(frobenius.Ob('y'))) 3 Node('output', i=0, obj=frobenius.Ty(frobenius.Ob('y'))) >>> for i, j in enumerate(f.bijection): print(f"{i} -> {j}") 0 -> 1 1 -> 0 2 -> 3 3 -> 2
- property is_bijective: bool#
Checks bijectivity, i.e. each spider is connected to two or zero ports. In that case, the diagram actually lives in a compact-closed category, i.e. it can be drawn using only swaps, cups and caps.
Examples
>>> from discopy.frobenius import Ty, Box, Hypergraph as H >>> x, y = map(Ty, "xy") >>> f = Box('f', x, y).to_hypergraph() >>> assert f.is_bijective and f.transpose().is_bijective >>> assert H.cups(x, x).is_bijective and H.caps(x, x).is_bijective >>> assert H.spiders(0, 0, x).is_bijective >>> assert not H.spiders(1, 2, x).is_bijective
- property is_monogamous: bool#
Checks monogamy, i.e. each input connects to exactly one output, formally whether
self.wires
induces a bijection:len(self.dom) + sum(len(box.dom) for box in boxes) == self.n_spiders - len(self.scalar_spiders) == sum(len(box.cod) for box in boxes) + len(self.dom)
In that case, the diagram actually lives in a traced category.
Examples
>>> from discopy.frobenius import Ty, Box, Hypergraph as H
>>> x, y = map(Ty, "xy") >>> f = Box('f', x, y).to_hypergraph()
>>> assert f.is_monogamous >>> assert (f >> f[::-1]).is_monogamous
>>> assert H.spiders(0, 0, x).is_monogamous
>>> cycle = H.caps(x, x) >> x @ (f >> f[::-1]) >> H.cups(x, x) >>> assert cycle.is_monogamous
>>> assert not f.transpose().is_monogamous >>> assert not H.cups(x, x).is_monogamous >>> assert not H.spiders(1, 2, x).is_monogamous >>> assert not H.spiders(2, 3, x).is_monogamous
- property is_polygynous: bool#
Checks polygyny, i.e. if each non-scalar spider is connected to exactly one output port.
- property is_causal: bool#
Checks causality, i.e. if each spider is connected to exactly one output port and to zero or more input ports all with higher indices.
If the diagram is causal then it lives in a symmetric monoidal category with a supply of commutative comonoids.
If the diagram is causal and monogamous then it actually lives in a symmetric monoidal category, i.e. it can be drawn using only swaps.
Examples
>>> from discopy.frobenius import Ty, Box, Hypergraph as H >>> x, y = map(Ty, "xy") >>> f = Box('f', x, y).to_hypergraph() >>> assert f.is_causal >>> assert (f >> H.spiders(1, 0, y)).is_causal >>> assert (H.spiders(1, 2, x) >> f @ f).is_causal
>>> cycle = H.caps(x, x) >> H.cups(x, x) >>> assert not cycle.is_causal
>>> assert not H.cups(x, x).is_causal
- make_bijective()[source]#
Introduces spider boxes to make self bijective.
Example
>>> from discopy.frobenius import Ty, Spider, Hypergraph as H
>>> spider = H.spiders(3, 2, Ty('x')).make_bijective() >>> assert spider.boxes == (Spider(3, 2, Ty('x')), ) >>> assert spider.wires == (0, 1, 2) + (0, 1, 2) + (3, 4) + (3, 4)
>>> copy = H.spiders(1, 2, Ty('x', 'y')).make_bijective() >>> assert copy.boxes == (Spider(1, 2, Ty('x')), Spider(1, 2, Ty('y')))
>>> unit = H.spiders(0, 1, Ty('x', 'y')).make_bijective() >>> assert unit.boxes == (Spider(0, 1, Ty('y')), Spider(0, 1, Ty('x')))
- Return type
- make_monogamous()[source]#
Introduce
Cup
andCap
boxes to make self monogamous.Example
>>> from discopy.frobenius import Ty, Box, Cup, Cap, Spider >>> x = Ty('x') >>> h = Box('f', x, x).transpose().to_hypergraph().make_monogamous() >>> assert h.boxes == (Cap(x, x), Box('f', x, x), Cup(x, x)) >>> assert h.wires == (0, ) + (1, 2) + (1, 3) + (0, 3) + (2, )
- Return type
- make_polygynous()[source]#
Introduce spider boxes to make self polygynous.
Example
>>> from discopy.frobenius import Ty, Box, Hypergraph as H, Spider >>> h = H.spiders(2, 3, Ty('x')).make_polygynous() >>> assert h.boxes == (Spider(2, 1, Ty('x')), ) >>> assert h.wires == (0, 1) + (0, 1, 2) + (2, 2, 2)
- Return type
- make_causal()[source]#
Introduce trace boxes to make self causal.
Example
>>> from discopy.frobenius import Ty, Box, Cup, Cap >>> x = Ty('x') >>> f = Box('f', x @ x, x @ x).to_hypergraph() >>> assert f.trace().make_causal().boxes\ ... == (Cap(x, x), f.boxes[0], Cup(x, x))
>>> from discopy.frobenius import Hypergraph as H, Spider >>> assert H.spiders(2, 1, x).make_causal().boxes\ ... == (Spider(2, 1, x),)
- Return type
- classmethod from_box(box)[source]#
Turn a box into a hypergraph with binary spiders for each wire.
- Parameters
box (Box) – The box to turn into a hypergraph.
- Return type
Example
>>> from discopy.frobenius import Ty, Box, Hypergraph as H >>> x, y, z = map(Ty, "xyz") >>> for p in Box('f', x, y @ z).to_hypergraph().ports: print(p) Node('input', i=0, obj=frobenius.Ty(frobenius.Ob('x'))) Node('dom', depth=0, i=0, obj=frobenius.Ty(frobenius.Ob('x'))) Node('cod', depth=0, i=0, obj=frobenius.Ty(frobenius.Ob('y'))) Node('cod', depth=0, i=1, obj=frobenius.Ty(frobenius.Ob('z'))) Node('output', i=0, obj=frobenius.Ty(frobenius.Ob('y'))) Node('output', i=1, obj=frobenius.Ty(frobenius.Ob('z')))
- classmethod from_diagram(old)[source]#
Turn a
Diagram
into aHypergraph
.- Parameters
old (Diagram) – The planar diagram to encode as hypergraph.
- Return type
Example
>>> from discopy.frobenius import Ty, Hypergraph as H >>> x, y = map(Ty, "xy") >>> back_n_forth = lambda d: H.from_diagram(d.to_diagram()) >>> for d in [H.spiders(0, 0, x), ... H.spiders(2, 3, x), ... H.spiders(1, 2, x @ y)]: ... assert back_n_forth(d) == d
- to_diagram(make_causal_first=False)[source]#
Downgrade to
Diagram
, called byprint
.- Parameters
make_causal_first (bool) – The order in which we downgrade.
- Return type
Note
Hypergraphs can be translated to planar diagrams in two different ways:
either we first
make_bijective()
(introducing spiders) thenmake_monogamous()
(introducing cups and caps) and finallymake_causal()
(introducing traces)or we first
make_polygynous()
(introducing merges) thenmake_causal()
(introducing traces) and finallymake_bijective()
(introducing copies).
Examples
>>> from discopy.frobenius import Ty, Box, Hypergraph as H >>> x = Ty('x') >>> v = Box('v', Ty(), x @ x).to_hypergraph() >>> print(v >> H.swap(x, x) >> v[::-1]) v >> Swap(x, x) >> v[::-1] >>> print(x @ H.swap(x, x) >> v[::-1] @ x) x @ Swap(x, x) >> v[::-1] @ x
- classmethod from_callable(dom, cod)[source]#
Turns an arbitrary Python function into a causal hypergraph.
- Parameters
- Return type
Callable[Callable, Hypergraph]
- classmethod from_graph(graph)[source]#
The inverse of
to_graph()
.- Parameters
graph (DiGraph) –
- Return type
- to_graph()[source]#
Translate a hypergraph into a labeled graph with nodes for inputs, outputs, boxes, domain, codomain and spiders.
- Return type
DiGraph
- draw(seed=None, k=0.25, path=None)[source]#
Draw a hypegraph using a force-based layout algorithm.
Examples
>>> from discopy.frobenius import Ty, Box, Hypergraph as H >>> x, y, z = map(Ty, "xyz") >>> f = Box('f', x, y @ z).to_hypergraph() >>> f.draw( ... path='docs/_static/hypergraph/box.png', seed=42)
>>> (H.spiders(2, 2, x) >> f @ x).draw( ... path='docs/_static/hypergraph/diagram.png', seed=42)