Hypergraph#
- class discopy.hypergraph.Hypergraph(dom, cod, boxes, wires, spider_types=None, offsets=None)[source]#
Bases:
Composable
,Whiskerable
,NamedGeneric['category', 'functor']
A hypergraph is given by:
a domain, a codomain and an n-tuple of boxes
an optional mapping
SpiderTypes
from spiders to types
A
Boundary
is just a pair of input and outputWires
.Wires
are n-tuples ofSpider
labels.Spider
labels can be of any type.- Parameters:
dom (category.ob) – The domain of the diagram, i.e. its input.
cod (category.ob) – The codomain of the diagram, i.e. its output.
boxes (tuple[category.ar, ...]) – The boxes inside the diagram.
wires (Wiring) – List of wires from ports to spiders.
spider_types (SpiderTypes) – Optional mapping from spiders to atomic types, if
None
then this is computed from the types of ports.offsets (tuple[int | None, ...]) – tuple[int | None, …] Number of wires left of each box, used by
to_diagram()
.
Note
Abstractly, a hypergraph diagram can be seen as a cospan for the boundary:
range(len(dom)) -> range(n_spiders) <- range(len(cod))
together with a cospan for each box in boxes:
range(len(box.dom)) -> range(n_spiders) <- range(len(box.cod))
Composition of two hypergraph diagram is given by the pushout of the span:
range(self.n_spiders) <- range(len(self.cod)) -> range(other.n_spiders)
Note
The
Hypergraph
class is parameterised by aCategory
, i.e. instances ofHypergraph[C]
havedom: C.ob
andcod: C.ob
as boundary andboxes: tuple[C.ar, ...]
as generators. For example:>>> from discopy.frobenius import Hypergraph as H >>> from discopy.frobenius import Ty, Diagram >>> assert H.category.ob == Ty and H.category.ar == Diagram
They are also parameterised by a
Functor
called byto_diagram()
.>>> from discopy.frobenius import Functor >>> assert H.functor == Functor
Examples
>>> x, y, z = map(Ty, "xyz")
>>> assert H.id(x @ y @ z).n_spiders == 3 >>> assert H.id(x @ y @ z).wires ==((0, 1, 2), (), (0, 1, 2))
>>> assert H.swap(x, y).n_spiders == 2 >>> assert H.swap(x, y).wires == ((0, 1), (), (1, 0))
>>> assert H.spiders(1, 2, x @ y).n_spiders == 2 >>> assert H.spiders(1, 2, x @ y).wires ==((0, 1), (), (0, 1, 0, 1)) >>> assert H.spiders(0, 0, x @ y @ z).n_spiders == 3 >>> assert H.spiders(0, 0, x @ y @ z).wires == ((), (), ())
>>> from discopy.frobenius import Box >>> f, g = Box('f', x, y).to_hypergraph(), Box('g', y, z).to_hypergraph()
>>> assert f.n_spiders == g.n_spiders == 2 >>> assert f.wires == g.wires == ((0, ), (((0, ), (1, )), ), (1, ))
>>> assert (f >> g).n_spiders == 3 >>> assert (f >> g).wires == ((0,), (((0,), (1,)), ((1,), (2,))), (2,))
>>> assert (f @ g).n_spiders == 4 >>> assert (f @ g).wires == ((0, 1), (((0,), (2,)), ((1,), (3,))), (2, 3))
- property spider_wires: list[tuple[set[int], set[int]]]#
The input and output wires for each spider of a hypergraph.
Example
>>> from discopy.frobenius import Ty, Box, Hypergraph as H
>>> x, y, z = map(Ty, "xyz") >>> f = Box('f', x, y).to_hypergraph() >>> for wires in (f >> H.spiders(1, 2, y)).spider_wires: print(wires) ({0}, {1}) ({2}, {3, 4})
- property ports#
The ports in a diagram.
Examples
>>> from discopy.frobenius import Ty, Box, Hypergraph as H
>>> x, y, z = map(Ty, "xyz") >>> f = Box('f', x, y @ y).to_hypergraph() >>> g = Box('g', y @ y, z).to_hypergraph() >>> for port in (f >> g).ports: print(port) Node('input', i=0, obj=x) Node('dom', depth=0, i=0, obj=x) Node('cod', depth=0, i=0, obj=y) Node('cod', depth=0, i=1, obj=y) Node('dom', depth=1, i=0, obj=y) Node('dom', depth=1, i=1, obj=y) Node('cod', depth=1, i=0, obj=z) Node('output', i=0, obj=z)
- rebracket(flat_wires, boxes=None, dom=None)[source]#
Rebracket a flat list of
Spider
into a properWiring
.- Parameters:
flat_wires (list[Any]) –
- property n_spiders#
The number of spiders in a hypergraph diagram.
- property scalar_spiders#
The zero-legged spiders in a hypergraph diagram.
- then(other)[source]#
Composition of two hypergraph diagrams, i.e. their
pushout()
.- Parameters:
other (Hypergraph) –
- tensor(other)[source]#
Tensor of two hypergraph diagrams, i.e. their disjoint union.
- Parameters:
other (Hypergraph) –
- dagger()[source]#
Dagger of a hypergraph diagram, called with
[::-1]
.Examples
>>> from discopy.frobenius import Ty, Box, Hypergraph as H >>> x, y, z = map(Ty, "xyz") >>> f = Box('f', x, y).to_hypergraph() >>> g = Box('g', y, z).to_hypergraph() >>> assert (f >> g)[::-1] == g[::-1] >> f[::-1] >>> assert H.spiders(1, 2, x @ y)[::-1] == H.spiders(2, 1, x @ y)
- explicit_trace(left=False)[source]#
The trace of a hypergraph with explicit boxes (trace, cup or cap).
- Parameters:
left – Whether to trace on the left or right.
Note
When
category.ar.trace_factory
is a subclass ofcategory.ar
, e.g. for symmetric diagrams, then the result is just one big trace box wrapped up as a hypergraph.Otherwise, we assume that the trace factory is a class method, e.g. for compact diagrams, in which case we use this method to introduce cup and cap boxes.
- trace(n=1, left=False)[source]#
The trace of a hypergraph is its pre- and post-composition with cups and caps to form a feedback loop.
- Parameters:
n – The number of wires to trace.
left – Whether to trace on the left or right.
- interchange(i, j)[source]#
Interchange boxes at indices
i
andj
.- Parameters:
i (int) – The index of the first box.
j (int) – The index of the second box.
- Return type:
Example
>>> from discopy.frobenius import Ty, Box, Hypergraph as H >>> x = Ty('x') >>> f = Box('f', Ty(), x).to_hypergraph() >>> g = Box('g', x, Ty()).to_hypergraph() >>> print((f >> g).interchange(0, 1)) Cap(x, x) >> g @ x >> f @ x >> Cup(x, x)
- simplify()[source]#
Simplify by applying interchangers eagerly until the length of the diagram is minimal, takes quadratic time.
Example
>>> from discopy.frobenius import Ty, Box, Hypergraph as H >>> x = Ty('x') >>> f = Box('f', Ty(), x).to_hypergraph() >>> g = Box('g', x, Ty()).to_hypergraph() >>> assert (f >> g).interchange(0, 1).simplify() == f >> g
- Return type:
- property bijection#
Bijection between ports.
:raises ValueError : If the hypergraph is not bijective.:
Examples
>>> from discopy.frobenius import Ty, Box, Hypergraph as H >>> x, y = map(Ty, "xy") >>> f = Box('f', x, y).to_hypergraph() >>> for i, port in enumerate(f.ports): print(i, port) 0 Node('input', i=0, obj=x) 1 Node('dom', depth=0, i=0, obj=x) 2 Node('cod', depth=0, i=0, obj=y) 3 Node('output', i=0, obj=y) >>> for i, j in enumerate(f.bijection): print(f"{i} -> {j}") 0 -> 1 1 -> 0 2 -> 3 3 -> 2
- property is_bijective: bool#
Checks bijectivity, i.e. each spider is connected to two or zero ports. In that case, the diagram actually lives in a compact-closed category, i.e. it can be drawn using only swaps, cups and caps.
Examples
>>> from discopy.frobenius import Ty, Box, Hypergraph as H >>> x, y = map(Ty, "xy") >>> f = Box('f', x, y).to_hypergraph() >>> assert f.is_bijective and f.transpose().is_bijective >>> assert H.cups(x, x).is_bijective and H.caps(x, x).is_bijective >>> assert H.spiders(0, 0, x).is_bijective >>> assert not H.spiders(1, 2, x).is_bijective
- property is_monogamous: bool#
Checks monogamy, i.e. each input connects to exactly one output, formally whether
self.wires
induces a bijection:len(self.dom) + sum(len(box.dom) for box in boxes) == self.n_spiders - len(self.scalar_spiders) == sum(len(box.cod) for box in boxes) + len(self.dom)
In that case, the diagram actually lives in a traced category.
Examples
>>> from discopy.frobenius import Ty, Box, Hypergraph as H
>>> x, y = map(Ty, "xy") >>> f = Box('f', x, y).to_hypergraph()
>>> assert f.is_monogamous >>> assert (f >> f[::-1]).is_monogamous
>>> assert H.spiders(0, 0, x).is_monogamous
>>> cycle = H.caps(x, x) >> x @ (f >> f[::-1]) >> H.cups(x, x) >>> assert cycle.is_monogamous
>>> assert not f.transpose().is_monogamous >>> assert not H.cups(x, x).is_monogamous >>> assert not H.spiders(1, 2, x).is_monogamous >>> assert not H.spiders(2, 3, x).is_monogamous
- property is_left_monogamous: bool#
Checks left monogamy, i.e. if each non-scalar spider is connected to exactly one output port.
- property is_causal: bool#
Checks causality, i.e. if each spider is connected to exactly one output port and to zero or more input ports all with higher indices.
If the diagram is causal then it lives in a symmetric monoidal category with a supply of commutative comonoids.
If the diagram is causal and monogamous then it actually lives in a symmetric monoidal category, i.e. it can be drawn using only swaps.
Examples
>>> from discopy.frobenius import Ty, Box, Hypergraph as H >>> x, y = map(Ty, "xy") >>> f = Box('f', x, y).to_hypergraph() >>> assert f.is_causal >>> assert (f >> H.spiders(1, 0, y)).is_causal >>> assert (H.spiders(1, 2, x) >> f @ f).is_causal
>>> cycle = H.caps(x, x) >> H.cups(x, x) >>> assert not cycle.is_causal
>>> assert not H.cups(x, x).is_causal
- make_bijective()[source]#
Introduces spider boxes to make self bijective.
Example
>>> from discopy.frobenius import Ty, Spider, Hypergraph as H
>>> spider = H.spiders(3, 2, Ty('x')).make_bijective() >>> assert spider.boxes == (Spider(3, 2, Ty('x')), ) >>> assert spider.wires == ((0, 1, 2), (((0, 1, 2), (3, 4)),), (3, 4))
>>> copy = H.spiders(1, 2, Ty('x', 'y')).make_bijective() >>> assert copy.boxes == (Spider(1, 2, Ty('x')), Spider(1, 2, Ty('y')))
>>> unit = H.spiders(0, 1, Ty('x', 'y')).make_bijective() >>> assert unit.boxes == (Spider(0, 1, Ty('y')), Spider(0, 1, Ty('x')))
- Return type:
- make_monogamous()[source]#
Introduce
Cup
andCap
boxes to make self monogamous.Example
>>> from discopy.frobenius import Ty, Box, Cup, Cap, Spider >>> x = Ty('x') >>> h = Box('f', x, x).transpose().to_hypergraph().make_monogamous() >>> assert list(zip(h.boxes, h.box_wires)) == [ ... (Cap(x, x), ((), (1, 2))), ... (Box('f', x, x), ((1,), (3,) )), ... (Cup(x, x), ((0, 3), () ))]
- Return type:
- make_left_monogamous()[source]#
Introduce spider boxes to make self left monogamous.
Example
>>> from discopy.frobenius import Ty, Box, Hypergraph as H, Spider >>> h = H.spiders(2, 3, Ty('x')).make_left_monogamous() >>> assert h.boxes == (Spider(2, 1, Ty('x')), ) >>> assert h.wires == ((0, 1), (((0, 1), (2,)),), (2, 2, 2))
- Return type:
- make_causal()[source]#
Introduce trace boxes to make self causal.
Example
>>> from discopy.frobenius import Ty, Box, Cup, Cap >>> x = Ty('x') >>> f = Box('f', x @ x, x @ x).to_hypergraph() >>> assert f.trace().make_causal().boxes\ ... == (Cap(x, x), f.boxes[0], Cup(x, x))
>>> from discopy.frobenius import Hypergraph as H, Spider >>> assert H.spiders(2, 1, x).make_causal().boxes\ ... == (Spider(2, 1, x),)
- Return type:
- classmethod from_box(box)[source]#
Turn a box into a hypergraph with binary spiders for each wire.
- Parameters:
box (Box) – The box to turn into a hypergraph.
- Return type:
Example
>>> from discopy.frobenius import Ty, Box, Hypergraph as H >>> x, y, z = map(Ty, "xyz") >>> for p in Box('f', x, y @ z).to_hypergraph().ports: print(p) Node('input', i=0, obj=x) Node('dom', depth=0, i=0, obj=x) Node('cod', depth=0, i=0, obj=y) Node('cod', depth=0, i=1, obj=z) Node('output', i=0, obj=y) Node('output', i=1, obj=z)
- classmethod from_diagram(old)[source]#
Turn a
Diagram
into aHypergraph
.- Parameters:
old (Diagram) – The planar diagram to encode as hypergraph.
- Return type:
Example
>>> from discopy.frobenius import Ty, Hypergraph as H >>> x, y = map(Ty, "xy") >>> back_n_forth = lambda d: H.from_diagram(d.to_diagram()) >>> for d in [H.spiders(0, 0, x), ... H.spiders(2, 3, x), ... H.spiders(1, 2, x @ y)]: ... assert back_n_forth(d) == d
- to_diagram(make_causal_first=False)[source]#
Downgrade to
Diagram
, called byprint
.- Parameters:
make_causal_first (bool) – The order in which we downgrade.
- Return type:
Note
Hypergraphs can be translated to planar diagrams in two different ways:
either we first
make_bijective()
(introducing spiders) thenmake_monogamous()
(introducing cups and caps) and finallymake_causal()
(introducing traces)or we first
make_left_monogamous()
(introducing merges) thenmake_causal()
(introducing traces) and finallymake_bijective()
(introducing copies).
Examples
>>> from discopy.frobenius import Ty, Box, Hypergraph as H >>> x = Ty('x') >>> v = Box('v', Ty(), x @ x).to_hypergraph() >>> print(v >> H.swap(x, x) >> v[::-1]) v >> Swap(x, x) >> v[::-1] >>> print(x @ H.swap(x, x) >> v[::-1] @ x) x @ Swap(x, x) >> v[::-1] @ x
- classmethod from_callable(dom, cod)[source]#
Turns an arbitrary Python function into a causal hypergraph.
- Parameters:
- Return type:
Callable[Callable, Hypergraph]
- classmethod from_graph(graph)[source]#
The inverse of
to_graph()
.- Parameters:
graph (DiGraph) –
- Return type:
- to_graph()[source]#
Translate a hypergraph into a labeled graph with nodes for inputs, outputs, boxes, domain, codomain and spiders.
- Return type:
DiGraph
- draw(seed=None, k=0.25, path=None)[source]#
Draw a hypegraph using a force-based layout algorithm.
Examples
>>> from discopy.frobenius import Ty, Box, Hypergraph as H >>> x, y, z = map(Ty, "xyz") >>> f = Box('f', x, y @ z).to_hypergraph() >>> f.draw( ... path='docs/_static/hypergraph/box.png', seed=42)
>>> (H.spiders(2, 2, x) >> f @ x).draw( ... path='docs/_static/hypergraph/diagram.png', seed=42)