Bibliography#
S. Abramsky. Retracing some paths in process algebra. In CONCUR'96: Concurrency Theory, volume 1119 of Lecture Notes in Computer Science, 1–17. Springer, 1996. arXiv:1401.5113.
Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi. String Diagram Rewrite Theory I: Rewriting with Frobenius Structure. Journal of the ACM, 69(2):14:1–14:58, March 2022. arXiv:2012.01847, doi:10.1145/3502719.
Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, Cambridge, 2017. ISBN 978-1-107-10422-8. doi:10.1017/9781316219317.
Antonin Delpeuch and Jamie Vicary. Normalization for planar string diagrams and a quadratic equivalence algorithm. Logical Methods in Computer Science, 2022. doi:10.46298/lmcs-18(1:10)2022.
Lawrence Dunn and Jamie Vicary. Coherence for Frobenius pseudomonoids and the geometry of linear proofs. ArXiv e-prints, 2019. arXiv:1601.05372, doi:10.23638/LMCS-15(3:5)2019.
Tobias Fritz and Wendong Liang. Free gs-monoidal categories and free Markov categories. Applied Categorical Structures, 31(2):21, April 2023. arXiv:2204.02284, doi:10.1007/s10485-023-09717-0.
André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Mathematical Proceedings of the Cambridge Philosophical Society, 119(3):447–468, April 1996. doi:10.1017/S0305004100074338.
A Markov. On certain insoluble problems concerning matrices. In Doklady Akad. Nauk SSSR, volume 57, 539–542. 1947.
Emil L. Post. Recursive Unsolvability of a problem of Thue. Journal of Symbolic Logic, 12(1):1–11, March 1947. doi:10.2307/2267170.
Peter Selinger. A Survey of Graphical Languages for Monoidal Categories. New Structures for Physics, pages 289–355, 2010. doi:10.1007/978-3-642-12821-9_4.
Axel Thue. Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln. Natur. KI, 1914. arXiv:1308.5858.