S. Abramsky. Retracing some paths in process algebra. In CONCUR'96: Concurrency Theory, volume 1119 of Lecture Notes in Computer Science, 1–17. Springer, 1996. arXiv:1401.5113.


Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi. String Diagram Rewrite Theory I: Rewriting with Frobenius Structure. Journal of the ACM, 69(2):14:1–14:58, March 2022. URL: (visited on 2023-04-20), arXiv:2012.01847, doi:10.1145/3502719.


Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, Cambridge, 2017. ISBN 978-1-107-10422-8. URL: (visited on 2021-08-04), doi:10.1017/9781316219317.


Antonin Delpeuch and Jamie Vicary. Normalization for planar string diagrams and a quadratic equivalence algorithm. Logical Methods in Computer Science, 2022. doi:10.46298/lmcs-18(1:10)2022.


Elena Di Lavore, Giovanni de Felice, and Mario Román. Monoidal Streams for Dataflow Programming. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '22, 1–14. New York, NY, USA, August 2022. Association for Computing Machinery. URL: (visited on 2023-10-25), doi:10.1145/3531130.3533365.


Lawrence Dunn and Jamie Vicary. Coherence for Frobenius pseudomonoids and the geometry of linear proofs. ArXiv e-prints, 2019. URL: (visited on 2019-11-07), arXiv:1601.05372, doi:10.23638/LMCS-15(3:5)2019.


Tobias Fritz and Wendong Liang. Free gs-monoidal categories and free Markov categories. Applied Categorical Structures, 31(2):21, April 2023. URL: (visited on 2023-04-21), arXiv:2204.02284, doi:10.1007/s10485-023-09717-0.


André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Mathematical Proceedings of the Cambridge Philosophical Society, 119(3):447–468, April 1996. URL: (visited on 2019-09-05), doi:10.1017/S0305004100074338.


A Markov. On certain insoluble problems concerning matrices. In Doklady Akad. Nauk SSSR, volume 57, 539–542. 1947.


Emil L. Post. Recursive Unsolvability of a problem of Thue. Journal of Symbolic Logic, 12(1):1–11, March 1947. URL: (visited on 2019-09-06), doi:10.2307/2267170.


Peter Selinger. A Survey of Graphical Languages for Monoidal Categories. New Structures for Physics, pages 289–355, 2010. URL:, doi:10.1007/978-3-642-12821-9_4.


Axel Thue. Probleme Über Veränderungen von Zeichenreihen nach gegebenen Regeln. Natur. KI, 1914. arXiv:1308.5858.