# -*- coding: utf-8 -*-
"""
The free closed monoidal category, i.e. with exponential objects.
Summary
-------
.. autosummary::
:template: class.rst
:nosignatures:
:toctree:
Ty
Exp
Over
Under
Diagram
Box
Eval
Curry
Sum
Category
Functor
Axioms
------
:meth:`Diagram.curry` and :meth:`Diagram.uncurry` are inverses.
>>> x, y, z = map(Ty, "xyz")
>>> f, g, h = Box('f', x, z << y), Box('g', x @ y, z), Box('h', y, x >> z)
>>> from discopy.drawing import Equation
>>> Equation(f.uncurry().curry(), f).draw(
... path='docs/_static/closed/curry-left.png', margins=(0.1, 0.05))
.. image:: /_static/closed/curry-left.png
:align: center
>>> Equation(h.uncurry(left=False).curry(left=False), h).draw(
... path='docs/_static/closed/curry-right.png', margins=(0.1, 0.05))
.. image:: /_static/closed/curry-right.png
:align: center
>>> Equation(
... g.curry().uncurry(), g, g.curry(left=False).uncurry(left=False)).draw(
... path='docs/_static/closed/uncurry.png')
.. image:: /_static/closed/uncurry.png
:align: center
"""
from __future__ import annotations
from discopy import cat, monoidal
from discopy.cat import Category, factory
from discopy.utils import (
factory_name,
from_tree,
)
[docs]@factory
class Ty(monoidal.Ty):
"""
A closed type is a monoidal type that can be exponentiated.
Parameters:
inside (Ty) : The objects inside the type.
Note
----
We can exponentials of types.
>>> x, y, z = Ty(*"xyz")
>>> print((x ** y) ** z)
((x ** y) ** z)
We can also distinguish left- and right-exponentials.
>>> print((x >> y) << z)
((x >> y) << z)
"""
def __pow__(self, other: Ty) -> Ty:
return Exp(self, other) if isinstance(other, Ty)\
else super().__pow__(other)
def __lshift__(self, other):
return Over(self, other)
def __rshift__(self, other):
return Under(other, self)
def __repr__(self):
return factory_name(type(self))\
+ f"({', '.join(map(repr, self.inside))})"
@property
def left(self) -> Ty:
return self.inside[0].left if self.is_exp else None
@property
def right(self) -> Ty:
return self.inside[0].right if self.is_exp else None
@property
def is_exp(self):
"""
Whether the type is an :class:`Exp` object.
Example
-------
>>> x, y = Ty('x'), Ty('y')
>>> assert (x ** y).is_exp and (x ** y @ Ty()).is_exp
"""
return len(self) == 1 and isinstance(self.inside[0], Exp)
@property
def is_under(self):
"""
Whether the type is an :class:`Under` object.
Example
-------
>>> x, y = Ty('x'), Ty('y')
>>> assert (x >> y).is_under and (x >> y @ Ty()).is_under
"""
return len(self) == 1 and isinstance(self.inside[0], Under)
@property
def is_over(self):
"""
Whether the type is an :class:`Over` object.
Example
-------
>>> x, y = Ty('x'), Ty('y')
>>> assert (x << y).is_over and (x << y @ Ty()).is_over
"""
return len(self) == 1 and isinstance(self.inside[0], Over)
[docs]class Exp(Ty, cat.Ob):
"""
A :code:`base` type to an :code:`exponent` type, called with :code:`**`.
Parameters:
base : The base type.
exponent : The exponent type.
"""
__ambiguous_inheritance__ = (cat.Ob, )
def __init__(self, base: Ty, exponent: Ty):
self.base, self.exponent = base, exponent
super().__init__(self)
@property
def left(self):
return self.exponent if isinstance(self, Under) else self.base
@property
def right(self):
return self.base if isinstance(self, Under) else self.exponent
def __eq__(self, other):
if isinstance(other, type(self)):
return (self.base, self.exponent) == (other.base, other.exponent)
if isinstance(other, Exp):
return False # Avoid infinite loop with Over(x, y) == Under(x, y).
return isinstance(other, Ty) and other.inside == (self, )
def __hash__(self):
return hash(repr(self))
def __str__(self):
return f"({self.base} ** {self.exponent})"
def __repr__(self):
return factory_name(type(self))\
+ f"({repr(self.base)}, {repr(self.exponent)})"
def to_tree(self):
return {
'factory': factory_name(type(self)),
'base': self.base.to_tree(),
'exponent': self.exponent.to_tree()}
@classmethod
def from_tree(cls, tree):
return cls(*map(from_tree, (tree['base'], tree['exponent'])))
[docs]class Over(Exp):
"""
An :code:`exponent` type over a :code:`base` type, called with :code:`<<`.
Parameters:
base : The base type.
exponent : The exponent type.
"""
def __str__(self):
return f"({self.base} << {self.exponent})"
[docs]class Under(Exp):
"""
A :code:`base` type under an :code:`exponent` type, called with :code:`>>`.
Parameters:
base : The base type.
exponent : The exponent type.
"""
def __str__(self):
return f"({self.exponent} >> {self.base})"
[docs]@factory
class Diagram(monoidal.Diagram):
"""
A closed diagram is a monoidal diagram
with :class:`Curry` and :class:`Eval` boxes.
Parameters:
inside(Layer) : The layers inside the diagram.
dom (Ty) : The domain of the diagram, i.e. its input.
cod (Ty) : The codomain of the diagram, i.e. its output.
"""
__ambiguous_inheritance__ = True
ty_factory = Ty
[docs] def curry(self, n=1, left=True) -> Diagram:
"""
Wrapper around :class:`Curry` called by :class:`Functor`.
Parameters:
n : The number of atomic types to curry.
left : Whether to curry on the left or right.
"""
return self.curry_factory(self, n, left)
[docs] @classmethod
def ev(cls, base: Ty, exponent: Ty, left=True) -> Eval:
"""
Wrapper around :class:`Eval` called by :class:`Functor`.
Parameters:
base : The base of the exponential type to evaluate.
exponent : The exponent of the exponential type to evaluate.
left : Whether to evaluate on the left or right.
"""
return cls.eval_factory(
base << exponent if left else exponent >> base)
[docs] def uncurry(self: Diagram, left=True) -> Diagram:
"""
Uncurry a closed diagram by composing it with :meth:`Diagram.ev`.
Parameters:
left : Whether to uncurry on the left or right.
"""
base, exponent = self.cod.base, self.cod.exponent
return self @ exponent >> self.ev(base, exponent, True) if left\
else exponent @ self >> self.ev(base, exponent, False)
[docs]class Box(monoidal.Box, Diagram):
"""
A closed box is a monoidal box in a closed diagram.
Parameters:
name (str) : The name of the box.
dom (Ty) : The domain of the box, i.e. its input.
cod (Ty) : The codomain of the box, i.e. its output.
"""
__ambiguous_inheritance__ = (monoidal.Box, )
[docs]class Eval(Box):
"""
The evaluation of an exponential type.
Parameters:
x : The exponential type to evaluate.
"""
def __init__(self, x: Exp):
self.base, self.exponent = x.base, x.exponent
self.left = isinstance(x, Over)
dom, cod = (x @ self.exponent, self.base) if self.left\
else (self.exponent @ x, self.base)
super().__init__("Eval" + str(x), dom, cod)
[docs]class Curry(monoidal.Bubble, Box):
"""
The currying of a closed diagram.
Parameters:
arg : The diagram to curry.
n : The number of atomic types to curry.
left : Whether to curry on the left or right.
"""
def __init__(self, arg: Diagram, n=1, left=True):
self.arg, self.n, self.left = arg, n, left
name = f"Curry({arg}, {n}, {left})"
if left:
dom = arg.dom[:len(arg.dom) - n]
cod = arg.cod << arg.dom[len(arg.dom) - n:]
else:
dom, cod = arg.dom[n:], arg.dom[:n] >> arg.cod
monoidal.Bubble.__init__(
self, arg, dom, cod, drawing_name="$\\Lambda$")
Box.__init__(self, name, dom, cod)
[docs]class Sum(monoidal.Sum, Box):
"""
A closed sum is a monoidal sum and a closed box.
Parameters:
terms (tuple[Diagram, ...]) : The terms of the formal sum.
dom (Ty) : The domain of the formal sum.
cod (Ty) : The codomain of the formal sum.
"""
__ambiguous_inheritance__ = (monoidal.Sum, )
Diagram.over, Diagram.under, Diagram.exp\
= map(staticmethod, (Over, Under, Exp))
Diagram.sum_factory = Sum
Id = Diagram.id
[docs]class Category(monoidal.Category):
"""
A closed category is a monoidal category with methods :code:`exp`
(:code:`over` and / or :code:`under`), :code:`ev` and :code:`curry`.
Parameters:
ob : The type of objects.
ar : The type of arrows.
"""
ob, ar = Ty, Diagram
[docs]class Functor(monoidal.Functor):
"""
A closed functor is a monoidal functor
that preserves evaluation and currying.
Parameters:
ob (Mapping[Ty, Ty]) : Map from atomic :class:`Ty` to :code:`cod.ob`.
ar (Mapping[Box, Diagram]) : Map from :class:`Box` to :code:`cod.ar`.
cod (Category) : The codomain of the functor.
"""
dom = cod = Category(Ty, Diagram)
def __call__(self, other):
for cls, attr in [(Over, "over"), (Under, "under"), (Exp, "exp")]:
if isinstance(other, cls):
method = getattr(self.cod.ar, attr)
return method(self(other.base), self(other.exponent))
if isinstance(other, Curry):
return self.cod.ar.curry(
self(other.arg), len(self(other.cod.exponent)), other.left)
if isinstance(other, Eval):
return self.cod.ar.ev(
self(other.base), self(other.exponent), other.left)
return super().__call__(other)
def to_rigid(self):
from discopy import rigid
return Functor(
ob=lambda x: rigid.Ty(x.inside[0].name),
ar=lambda f: rigid.Box(
f.name, Diagram.to_rigid(f.dom), Diagram.to_rigid(f.cod)),
cod=rigid.Category())(self)
Id = Diagram.id
Diagram.to_rigid = to_rigid
Diagram.curry_factory = Curry
Diagram.eval_factory = Eval