Source code for discopy.quantum.gates

# -*- coding: utf-8 -*-

"""
Gates in a :class:`discopy.quantum.circuit.Circuit`.

Summary
-------

.. autosummary::
    :template: class.rst
    :nosignatures:
    :toctree:

    SelfConjugate
    AntiConjugate
    Discard
    MixedState
    Measure
    Encode
    QuantumGate
    ClassicalGate
    Copy
    Match
    Digits
    Bits
    Ket
    Bra
    Controlled
    Parametrized
    Rotation
    Rx
    Ry
    Rz
    CU1
    CRz
    CRx
    Scalar
    MixedScalar
    Sqrt

.. admonition:: Functions

    .. autosummary::
        :template: function.rst
        :nosignatures:
        :toctree:

        sqrt
        scalar
"""
import copy
from math import e, pi

from discopy import messages
from discopy.cat import rsubs
from discopy.matrix import get_backend
from discopy.quantum.circuit import (
    Circuit, Digit, Ty, bit, qubit, Box, Swap, Sum, Id)
from discopy.tensor import backend
from discopy.utils import factory_name, assert_isinstance


def format_number(data):
    """ Tries to format a number. """
    try:
        return f'{data:.3g}'
    except TypeError:
        return data


[docs] class SelfConjugate(Box): """ A self-conjugate box, i.e. where the transpose is the dagger. """ def conjugate(self): return self def rotate(self, left=False): del left return self.dagger()
[docs] class AntiConjugate(Box): """ An anti-conjugate box, i.e. where the conjugate is the dagger. """ def conjugate(self): return self.dagger() def rotate(self, left=False): del left return self
[docs] class Discard(SelfConjugate): """ Discard n qubits. If :code:`dom == bit` then marginal distribution. """ draw_as_discards = True def __init__(self, dom=1): if isinstance(dom, int): dom = qubit ** dom super().__init__( f"Discard({dom})", dom, qubit ** 0, is_mixed=True) self.n_qubits = len(dom) def dagger(self): return MixedState(self.dom) def _decompose(self): return Id().tensor(*[Discard()] * self.n_qubits)
[docs] class MixedState(SelfConjugate): """ Maximally-mixed state on n qubits. If :code:`cod == bit` then uniform distribution. """ draw_as_discards = True def __init__(self, cod=1): if isinstance(cod, int): cod = qubit ** cod super().__init__( f"MixedState({cod})", qubit ** 0, cod, is_mixed=True) self.drawing_name = "MixedState" if cod == bit: self.drawing_name = "" self.draw_as_spider, self.color = True, "black" def dagger(self): return Discard(self.cod) def _decompose(self): return Id().tensor(*[MixedState()] * len(self.cod))
[docs] class Measure(SelfConjugate): """ Measure n qubits into n bits. Parameters ---------- n_qubits : int Number of qubits to measure. destructive : bool, optional Whether to do a non-destructive measurement instead. override_bits : bool, optional Whether to override input bits, this is the standard behaviour of tket. """ draw_as_measures = True def __init__(self, n_qubits=1, destructive=True, override_bits=False): dom, cod = qubit ** n_qubits, bit ** n_qubits name = f"Measure({'' if n_qubits == 1 else n_qubits})" if not destructive: cod = qubit ** n_qubits @ cod name = name\ .replace("()", "(1)").replace(')', ", destructive=False)") if override_bits: dom = dom @ bit ** n_qubits name = name\ .replace("()", "(1)").replace(')', ", override_bits=True)") super().__init__(name, dom, cod, is_mixed=True) self.destructive, self.override_bits = destructive, override_bits self.n_qubits = n_qubits self.draw_as_measures = True def dagger(self): return Encode(self.n_qubits, constructive=self.destructive, reset_bits=self.override_bits) def _decompose(self): return Id().tensor(*[ Measure(destructive=self.destructive, override_bits=self.override_bits)] * self.n_qubits)
[docs] class Encode(SelfConjugate): """ Controlled preparation, i.e. encode n bits into n qubits. Parameters ---------- n_bits : int Number of bits to encode. constructive : bool, optional Whether to do a classically-controlled correction instead. reset_bits : bool, optional Whether to reset the bits to the uniform distribution. """ draw_as_measures = True def __init__(self, n_bits=1, constructive=True, reset_bits=False): dom, cod = bit ** n_bits, qubit ** n_bits name = Measure(n_bits, constructive, reset_bits).name\ .replace("Measure", "Encode")\ .replace("destructive", "constructive")\ .replace("override_bits", "reset_bits") super().__init__(name, dom, cod, is_mixed=True) self.constructive, self.reset_bits = constructive, reset_bits self.n_bits = n_bits def dagger(self): return Measure(self.n_bits, destructive=self.constructive, override_bits=self.reset_bits) def _decompose(self): return Id().tensor(*[ Encode(constructive=self.constructive, reset_bits=self.reset_bits)] * self.n_bits)
[docs] class QuantumGate(Box): """ Quantum gates, i.e. unitaries on n qubits. """ is_mixed = False is_classical = False def __init__(self, name: str, dom: Ty, cod: Ty, data=None, **params): if data is not None and hasattr(data, "__len__"): data = [complex(v) for v in data] super().__init__(name, dom, cod, data, **params) def __setstate__(self, state): if "_array" in state and not state["_array"] is None: state["data"] = state['_array'].flatten().tolist() if "_name" in state: if state["_name"] in GATES and hasattr( GATES[state["_name"]], "data"): state["data"] = copy.deepcopy(GATES[state["_name"]].data) state["_z"] = GATES[state["_name"]].z super().__setstate__(state)
[docs] class ClassicalGate(SelfConjugate): """ Classical gates, i.e. from digits to digits. >>> from sympy import symbols >>> array = symbols("a b c d") >>> f = ClassicalGate('f', bit, bit, array) >>> f.data (a, b, c, d) >>> f.lambdify(*array)(1, 2, 3, 4).data (1, 2, 3, 4) """ is_mixed = False is_classical = True
[docs] class Copy(ClassicalGate): """ Takes a bit, returns two copies of it. """ def __init__(self): super().__init__("Copy", bit, bit ** 2, [1, 0, 0, 0, 0, 0, 0, 1]) self.draw_as_spider, self.color = True, "black" self.drawing_name = "" def dagger(self): return Match()
[docs] class Match(ClassicalGate): """ Takes two bits in, returns them if they are equal. """ def __init__(self): super().__init__("Match", bit ** 2, bit, [1, 0, 0, 0, 0, 0, 0, 1]) self.draw_as_spider, self.color = True, "black" self.drawing_name = "" def dagger(self): return Copy()
[docs] class Digits(ClassicalGate): """ Classical state for a given string of digits of a given dimension. Examples -------- >>> from discopy.tensor import Dim, Tensor >>> assert Digits(2, dim=4).eval()\\ ... == Tensor[complex](dom=Dim(1), cod=Dim(4), array=[0, 0, 1, 0]) """ draw_as_brakets = True def __init__(self, *digits, dim=None, is_dagger=False): if not isinstance(dim, int): raise TypeError(int, dim) self._digits, self._dim = digits, dim str_digits = ', '.join(map(str, digits)) name = f"Digits({str_digits}, dim={dim})" if dim != 2 \ else f"Bits({str_digits})" dom, cod = Ty(), Ty(Digit(dim)) ** len(digits) dom, cod = (cod, dom) if is_dagger else (dom, cod) super().__init__(name, dom, cod, is_dagger=is_dagger) def __repr__(self): return self.name + (".dagger()" if self.is_dagger else "") @property def dim(self): """ The dimension of the information units. >>> assert Bits(1, 0).dim == 2 """ return self._dim @property def digits(self): """ The digits of a classical state. """ return list(self._digits) bitstring = digits @property def array(self): with backend('numpy') as np: array = np.zeros(len(self._digits) * (self._dim, )) array[self._digits] = 1 return array def dagger(self): return Digits(*self.digits, dim=self.dim, is_dagger=not self.is_dagger) def to_drawing(self): result = QuantumGate.to_drawing(self) result.draw_as_brakets, result._digits = True, self._digits return result
[docs] def Bits(*bitstring, is_dagger=False): return Digits(*bitstring, dim=2, is_dagger=is_dagger)
[docs] class Ket(SelfConjugate, QuantumGate): """ Implements qubit preparation for a given bitstring. >>> from discopy.tensor import Dim, Tensor >>> assert Ket(1, 0).cod == qubit ** 2 >>> assert Ket(1, 0).eval()\\ ... == Tensor[complex](dom=Dim(1), cod=Dim(2, 2), array=[0, 0, 1, 0]) """ to_drawing = Digits.to_drawing array = Digits.array def __init__(self, *bitstring): if not all([bit in [0, 1] for bit in bitstring]): raise Exception('Bitstring can only contain integers 0 or 1.') dom, cod = qubit ** 0, qubit ** len(bitstring) name = f"Ket({', '.join(map(str, bitstring))})" super().__init__(name, dom, cod) self._digits, self._dim, self.draw_as_brakets = bitstring, 2, True @property def bitstring(self): """ The bitstring of a Ket. """ return list(self._digits) def dagger(self): return Bra(*self.bitstring) def _decompose(self): return Id().tensor(*[Ket(b) for b in self.bitstring])
[docs] class Bra(SelfConjugate, QuantumGate): """ Implements qubit post-selection for a given bitstring. >>> from discopy.tensor import Dim, Tensor >>> assert Bra(1, 0).dom == qubit ** 2 >>> assert Bra(1, 0).eval()\\ ... == Tensor[complex](dom=Dim(2, 2), cod=Dim(1), array=[0, 0, 1, 0]) """ to_drawing = Digits.to_drawing array = Digits.array def __init__(self, *bitstring): if not all([bit in [0, 1] for bit in bitstring]): raise Exception('Bitstring can only contain integers 0 or 1.') name = f"Bra({', '.join(map(str, bitstring))})" dom, cod = qubit ** len(bitstring), qubit ** 0 super().__init__(name, dom, cod) self._digits, self._dim, self.draw_as_brakets = bitstring, 2, True @property def bitstring(self): """ The bitstring of a Bra. """ return list(self._digits) def dagger(self): return Ket(*self.bitstring) def _decompose(self): return Id().tensor(*[Bra(b) for b in self.bitstring])
[docs] class Controlled(QuantumGate): """ Abstract class for controled quantum gates. Parameters ---------- controlled : QuantumGate Gate to control, e.g. :code:`CX = Controlled(X)`. distance : int, optional Number of qubits from the control to the target, default is :code:`0`. If negative, the control is on the right of the target. """ draw_as_controlled = True def __init__(self, controlled, distance=1): assert_isinstance(controlled, QuantumGate) if not distance: raise ValueError(messages.ZERO_DISTANCE_CONTROLLED) self.controlled, self.distance = controlled, distance n_qubits = len(controlled.dom) + abs(distance) name = f'C{controlled}' dom = cod = qubit ** n_qubits QuantumGate.__init__(self, name, dom, cod, data=controlled.data) def dagger(self): return Controlled(self.controlled.dagger(), distance=self.distance) def conjugate(self): controlled_conj = self.controlled.conjugate() return Controlled(controlled_conj, distance=-self.distance) def lambdify(self, *symbols, **kwargs): c_fn = self.controlled.lambdify(*symbols) return lambda *xs: type(self)(c_fn(*xs), distance=self.distance) def subs(self, *args): controlled = self.controlled.subs(*args) return type(self)(controlled, distance=self.distance) def __repr__(self): return f'Controlled({self.controlled!r}, distance={self.distance!r})' def __str__(self): return self.name if self.distance == 1\ else f'Controlled({self.controlled}, distance={self.distance})' def __eq__(self, other): return not isinstance(other, Box) and super().__eq__(other)\ or isinstance(other, Controlled)\ and self.distance == other.distance\ and self.controlled == other.controlled @property def phase(self): return self.controlled.phase __hash__ = QuantumGate.__hash__ l = r = property(conjugate) def _decompose_grad(self): controlled, distance = self.controlled, self.distance if isinstance(controlled, (Rx, Rz)): phase = self.phase decomp = Controlled(X, distance=distance)\ >> qubit ** distance @ Rz(-phase / 2) @ qubit ** -distance\ >> Controlled(X, distance=distance)\ >> qubit ** distance @ Rz(phase / 2) @ qubit ** -distance if isinstance(controlled, Rx): decomp <<= qubit ** distance @ H @ qubit ** -distance decomp >>= qubit ** distance @ H @ qubit ** -distance return decomp return self def _decompose(self): controlled, distance = self.controlled, self.distance n_qubits = len(self.dom) if distance == 1: return self skipped_qbs = n_qubits - (1 + len(controlled.dom)) if distance > 0: pattern = [0, *range(skipped_qbs + 1, n_qubits), *range(1, skipped_qbs + 1)] else: pattern = [n_qubits - 1, *range(n_qubits - 1)] perm = Circuit.permutation(pattern) diagram = (perm >> type(self)(controlled) @ Id(skipped_qbs) >> perm[::-1]) return diagram def grad(self, var, **params): if var not in self.free_symbols: return Sum([], self.dom, self.cod) decomp = self._decompose_grad() if decomp == self: raise NotImplementedError() return decomp.grad(var, **params) @property def array(self): controlled, distance = self.controlled, self.distance n_qubits = len(self.dom) with backend() as np: if distance == 1: d = 1 << n_qubits - 1 part1 = np.array([[1, 0], [0, 0]]) part2 = np.array([[0, 0], [0, 1]]) array = np.kron(part1, np.eye(d))\ + np.kron(part2, np.array(controlled.array.reshape(d, d))) else: array = self._decompose().eval().array return array.reshape(*[2] * 2 * n_qubits) def to_drawing(self): result = super().to_drawing() result.distance, result.controlled = self.distance, self.controlled return result
[docs] class Parametrized(Box): """ Abstract class for parametrized boxes in a quantum circuit. Parameters ---------- name : str Name of the parametrized class, e.g. :code:`"CRz"`. dom, cod : discopy.quantum.circuit.Ty Domain and codomain. data : any Data of the box, potentially with free symbols. Example ------- >>> from sympy.abc import phi >>> from sympy import pi, exp, I >>> assert Rz(phi).array[0,0] == exp(-1.0 * I * pi * phi) >>> c = Rz(phi) >> Rz(-phi) >>> assert c.lambdify(phi)(.25) == Rz(.25) >> Rz(-.25) """ def __init__(self, name, dom, cod, data=None, **params): self.drawing_name = f'{name}({data})' Box.__init__(self, name, dom, cod, data=data, **params) @property def modules(self): if self.free_symbols: import sympy return sympy else: return get_backend() def subs(self, *args): data = rsubs(self.data, *args) return type(self)(data) def lambdify(self, *symbols, **kwargs): from sympy import lambdify with backend() as np: data = lambdify(symbols, self.data, dict(kwargs, modules=np)) return lambda *xs: type(self)(data(*xs)) def __str__(self): if isinstance(self, Controlled): # Ensure `Controlled(Rx(0.5))` and `CRx(0.5)` are printed the same. return Controlled.__str__(self) return f'{self.name}({format_number(self.data)})' def __repr__(self): return factory_name(type(self)) + f"({format_number(self.data)})"
[docs] class Rotation(Parametrized, QuantumGate): """ Abstract class for rotation gates. """ n_qubits = 1 def __init__(self, phase, z=0): name, n_qubits = type(self).__name__, type(self).n_qubits dom = cod = qubit ** n_qubits QuantumGate.__init__(self, name, dom, cod, z=z) Parametrized.__init__(self, name, dom, cod, is_mixed=False, data=phase) @classmethod def from_tree(cls, tree: dict): return cls(tree['data'], tree.get('z', 0)) @property def phase(self): """ The phase of a rotation gate. """ return self.data def dagger(self): return type(self)(-self.phase) def rotate(self, left=False): del left return type(self)(self.phase, z=int(not self.z)) def grad(self, var, **params): if var not in self.free_symbols: return Sum([], self.dom, self.cod) gradient = self.phase.diff(var) gradient = complex(gradient) if not gradient.free_symbols else gradient with backend() as np: if params.get('mixed', True): if len(self.dom) != 1: raise NotImplementedError s = scalar(np.pi * gradient, is_mixed=True) t1 = type(self)(self.phase + .25) t2 = type(self)(self.phase - .25) return s @ (t1 + scalar(-1, is_mixed=True) @ t2) return scalar(np.pi * gradient) @ type(self)(self.phase + .5)
[docs] class Rx(AntiConjugate, Rotation): """ X rotations. """ @property def array(self): with backend() as np: half_theta = np.array(self.modules.pi * self.phase, dtype=complex) sin = self.modules.sin(half_theta) cos = self.modules.cos(half_theta) return np.stack((cos, -1j * sin, -1j * sin, cos)).reshape(2, 2)
[docs] class Ry(SelfConjugate, Rotation): """ Y rotations. """ @property def array(self): with backend() as np: half_theta = np.array(self.modules.pi * self.phase) sin = self.modules.sin(half_theta) cos = self.modules.cos(half_theta) return np.stack((cos, sin, -sin, cos)).reshape(2, 2)
[docs] class Rz(AntiConjugate, Rotation): """ Z rotations. """ @property def array(self): with backend() as np: half_theta = np.array(self.modules.pi * self.phase) e1 = self.modules.exp(-1j * half_theta) e2 = self.modules.exp(1j * half_theta) z = np.array(0) return np.stack((e1, z, z, e2)).reshape(2, 2)
class U1(AntiConjugate, Rotation): """ Z rotation, differ from :class:`Rz` by a global phase. """ @property def array(self): with backend() as np: theta = np.array(2 * self.modules.pi * self.phase) return np.stack( (1, 0, 0, self.modules.exp(1j * theta))).reshape(2, 2) class ControlledRotation(Controlled, Rotation): """ Controlled rotation gate. """ def __init__(self, phase, distance=1): Controlled.__init__(self, self.controlled(phase), distance) lambdify = Rotation.lambdify subs = Rotation.subs
[docs] class CU1(ControlledRotation): """ Controlled U1 rotations. """ controlled = U1
[docs] class CRz(ControlledRotation): """ Controlled Z rotations. """ controlled = Rz
[docs] class CRx(ControlledRotation): """ Controlled X rotations. """ controlled = Rx
[docs] class Scalar(Parametrized): """ Scalar, i.e. quantum gate with empty domain and codomain. """ def __init__(self, data, name=None, is_mixed=False): self.drawing_name = format_number(data) name = "scalar" if name is None else name dom, cod = qubit ** 0, qubit ** 0 super().__init__(name, dom, cod, is_mixed=is_mixed, data=data, z=None) def __setstate__(self, state): state["_z"] = None super().__setstate__(state) def __repr__(self): return super().__repr__()[:-1] + ( ', is_mixed=True)' if self.is_mixed else ')') @property def array(self): with backend() as np: return np.array(self.data) def grad(self, var, **params): if var not in self.free_symbols: return Sum([], self.dom, self.cod) return Scalar(self.data.diff(var)) def dagger(self): return Scalar(self.data.conjugate(), self.name, self.is_mixed)
[docs] class MixedScalar(Scalar): """ Mixed scalar, i.e. where the Born rule has already been applied. """ def __init__(self, data): super().__init__(data, is_mixed=True)
[docs] class Sqrt(Scalar): """ Square root. """ def __init__(self, data): super().__init__(data, name="sqrt") self.drawing_name = f"sqrt({format_number(data)})" def __setstate__(self, state): super().__setstate__(state) if self.is_dagger is None: self.is_dagger = False @property def array(self): with backend() as np: return np.array(self.data ** .5) def dagger(self): return self
[docs] def sqrt(expr): """ Returns a 0-qubit quantum gate that scales by a square root. """ return Sqrt(expr)
[docs] def scalar(expr, is_mixed=False): """ Returns a 0-qubit quantum gate that scales by a complex number. """ return Scalar(expr, is_mixed=is_mixed)
SWAP = Swap(qubit, qubit) H = QuantumGate( 'H', qubit, qubit, data=[2 ** -0.5 * x for x in [1, 1, 1, -1]], is_dagger=None, z=None) S = QuantumGate('S', qubit, qubit, [1, 0, 0, 1j]) T = QuantumGate('T', qubit, qubit, [1, 0, 0, e ** (1j * pi / 4)]) X = QuantumGate('X', qubit, qubit, [0, 1, 1, 0], is_dagger=None, z=None) Y = QuantumGate('Y', qubit, qubit, [0, 1j, -1j, 0], is_dagger=None) Z = QuantumGate('Z', qubit, qubit, [1, 0, 0, -1], is_dagger=None, z=None) CX = Controlled(X) CY = Controlled(Y) CZ = Controlled(Z) CCX = Controlled(CX) CCZ = Controlled(CZ) GATES = { 'SWAP': SWAP, 'H': H, 'S': S, 'T': T, 'X': X, 'Y': Y, 'Z': Z, 'CZ': CZ, 'CY': CY, 'CX': CX, 'CCX': CCX, 'CCZ': CCZ, 'Rx': Rx, 'Ry': Ry, 'Rz': Rz, 'U1': U1, 'CRx': CRx, 'CRz': CRz, 'CU1': CU1, } for attr, gate in GATES.items(): def closure(attr=attr, gate=gate): """ Easiest way around the Python late binding gotcha. """ if isinstance(gate, Controlled)\ and isinstance(gate.controlled, Controlled): def method(self, i: int, j: int, k: int) -> Circuit: """ Apply {} gate to a circuit given qubit indices. Parameters: i : First control index. j : Second control index. k : Target index. """ return self.apply_controlled( gate.controlled.controlled, i, j, k) elif isinstance(gate, Controlled): def method(self, i: int, j: int) -> Circuit: """ Apply {} gate to a circuit given qubit indices. Parameters: i : Control index. j : Target index. """ return self.apply_controlled(gate.controlled, i, j) elif isinstance(gate, Box): def method(self, i: int) -> Circuit: """ Apply {} gate to a circuit given qubit index. Parameters: i : Target index. """ return self.apply_controlled(gate, i) elif issubclass(gate, Rotation) and issubclass(gate, Controlled): def method(self, phi: float, i: int, j: int) -> Circuit: """ Apply :class:`{}` to a circuit given phase and indices. Parameters: phi : Phase. i : Control index. j : Target index. """ return self.apply_controlled(gate.controlled(phi), i, j) elif issubclass(gate, Rotation): def method(self, phi: float, i: int) -> Circuit: """ Apply :class:`{}` to a circuit given phase and target index. Parameters: phi : Phase. i : Target index. """ return self.apply_controlled(gate(phi), i) method.__doc__ = method.__doc__.format(attr) return method setattr(Circuit, attr, closure())