Bibliography#
S. Abramsky. Retracing some paths in process algebra. In CONCUR'96: Concurrency Theory, volume 1119 of Lecture Notes in Computer Science, 1–17. Springer, 1996. arXiv:1401.5113.
Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi. String Diagram Rewrite Theory I: Rewriting with Frobenius Structure. Journal of the ACM, 69(2):14:1–14:58, March 2022. URL: https://doi.org/10.1145/3502719 (visited on 2023-04-20), arXiv:2012.01847, doi:10.1145/3502719.
Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, Cambridge, 2017. ISBN 978-1-107-10422-8. URL: https://www.cambridge.org/core/books/picturing-quantum-processes/1119568B3101F3A685BE832FEEC53E52 (visited on 2021-08-04), doi:10.1017/9781316219317.
Antonin Delpeuch and Jamie Vicary. Normalization for planar string diagrams and a quadratic equivalence algorithm. Logical Methods in Computer Science, 2022. arXiv:1804.07832, doi:10.46298/lmcs-18(1:10)2022.
Elena Di Lavore, Giovanni de Felice, and Mario Román. Monoidal Streams for Dataflow Programming. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '22, 1–14. New York, NY, USA, August 2022. Association for Computing Machinery. URL: https://doi.org/10.1145/3531130.3533365 (visited on 2023-10-25), doi:10.1145/3531130.3533365.
Lawrence Dunn and Jamie Vicary. Coherence for Frobenius pseudomonoids and the geometry of linear proofs. ArXiv e-prints, 2019. URL: http://arxiv.org/abs/1601.05372 (visited on 2019-11-07), arXiv:1601.05372, doi:10.23638/LMCS-15(3:5)2019.
Tobias Fritz and Wendong Liang. Free gs-monoidal categories and free Markov categories. Applied Categorical Structures, 31(2):21, April 2023. URL: http://arxiv.org/abs/2204.02284 (visited on 2023-04-21), arXiv:2204.02284, doi:10.1007/s10485-023-09717-0.
André Joyal and Ross Street. Planar diagrams and tensor algebra. Unpublished manuscript, available from Ross Street's website, 1988.
André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Mathematical Proceedings of the Cambridge Philosophical Society, 119(3):447–468, April 1996. URL: https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/traced-monoidal-categories/2BE85628D269D9FABAB41B6364E117C8 (visited on 2019-09-05), doi:10.1017/S0305004100074338.
A Markov. On certain insoluble problems concerning matrices. In Doklady Akad. Nauk SSSR, volume 57, 539–542. 1947.
Emil L. Post. Recursive Unsolvability of a problem of Thue. Journal of Symbolic Logic, 12(1):1–11, March 1947. URL: https://www.cambridge.org/core/product/identifier/S0022481200076295/type/journal_article (visited on 2019-09-06), doi:10.2307/2267170.
Peter Selinger. A Survey of Graphical Languages for Monoidal Categories. New Structures for Physics, pages 289–355, 2010. URL: https://doi.org/10.1007/978-3-642-12821-9_4, doi:10.1007/978-3-642-12821-9_4.
Axel Thue. Probleme Über Veränderungen von Zeichenreihen nach gegebenen Regeln. Natur. KI, 1914. arXiv:1308.5858.